Protein–Protein Interfaces from Cytochrome c Oxidase I Evolve Faster than Nonbinding Surfaces, yet Negative Selection Is the Driving Force
نویسندگان
چکیده
Respiratory complexes are encoded by two genomes (mitochondrial DNA [mtDNA] and nuclear DNA [nDNA]). Although the importance of intergenomic coadaptation is acknowledged, the forces and constraints shaping such coevolution are largely unknown. Previous works using cytochrome c oxidase (COX) as a model enzyme have led to the so-called "optimizing interaction" hypothesis. According to this view, mtDNA-encoded residues close to nDNA-encoded residues evolve faster than the rest of positions, favoring the optimization of protein-protein interfaces. Herein, using evolutionary data in combination with structural information of COX, we show that failing to discern the effects of interaction from other structural and functional effects can lead to deceptive conclusions such as the "optimizing hypothesis." Once spurious factors have been accounted for, data analysis shows that mtDNA-encoded residues engaged in contacts are, in general, more constrained than their noncontact counterparts. Nevertheless, noncontact residues from the surface of COX I subunit are a remarkable exception, being subjected to an exceptionally high purifying selection that may be related to the maintenance of a suitable heme environment. We also report that mtDNA-encoded residues involved in contacts with other mtDNA-encoded subunits are more constrained than mtDNA-encoded residues interacting with nDNA-encoded polypeptides. This differential behavior cannot be explained on the basis of predicted thermodynamic stability, as interactions between mtDNA-encoded subunits contribute more weakly to the complex stability than those interactions between subunits encoded by different genomes. Therefore, the higher conservation observed among mtDNA-encoded residues involved in intragenome interactions is likely due to factors other than structural stability.
منابع مشابه
Molecular Characterization and Phylogeny Analysis Based on Sequences of Cytochrome Oxidase gene From Hemiscorpius lepturus of Iran
Abstract: Background: Hemiscorpius lepturus is a medically important scorpion found along the Iranian borders, especially near to Khuzestan Province in the south-west of Iran. This is the only non-buthid scorpion which is potentially lethal in southern Iran and is responsible for severe dermonecrotic scorpionism. OBJECTIVES: In this study, DNA fragment of the mitochondrial cytochrome c oxidase ...
متن کاملPrecursor protein translocation by the Escherichia coli translocase is directed by the protonmotive force.
The SecY/E protein of Escherichia coli was coreconstituted with the proton pump bacteriorhodopsin and cytochrome c oxidase yielding proteoliposomes capable of sustaining a protonmotive force (delta p) of defined polarity and composition. Proteoliposomes support the ATP- and SecA-dependent translocation of proOmpA which is stimulated by a delta p, inside acid and positive. delta p of opposite po...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملIsolation and Study of S-layer Nanostructure of Deinococcus Radiodurans R1
Crystalline surface layer proteins (S-layer proteins) have considerable potential for the crystalline arrays in biotechnology, biomimetics and nonlife applications, including areas such as microelectronics and molecular nanotechnology. The extensive application potential of surface layers in nanobiotechnology is according to the particular inherent attributes of the single molecular arrays cons...
متن کاملDocking of cytochrome c6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum.
The interactions between redox proteins are transient in nature. Therefore, very few crystal structures are available for the complexes formed between these proteins. Computational docking simulations thus provide a useful alternative method for studying the interactions between electron transfer proteins. In this paper, we have studied the interactions between the aa(3)-type cytochrome c oxida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2014